Online or onsite, instructor-led live Kubeflow training courses demonstrate through interactive hands-on practice how to use Kubeflow to build, deploy, and manage machine learning workflows on Kubernetes.
Kubeflow training is available as "online live training" or "onsite live training". Online live training (aka "remote live training") is carried out by way of an interactive, remote desktop. Onsite live Kubeflow training can be carried out locally on customer premises in Kathmandu or in NobleProg corporate training centers in Kathmandu.
NobleProg -- Your Local Training Provider
Kathmandu Classroom
near Soaltee, Tahachal Marg, Kathmandu, Nepal, 44600
Set in Kathmandu, this classroom is well located near Tahachal Marg with all amenities and WiFi.
For Sales Enquires and Meetings
All our centres have batches running on weekdays and weekends hence, please note that, in most cases, usually we are not able to organise ad hoc sales meetings, especially on our classrooms as they are all occupied with ongoing training sessions . Please contact us by e-mail or phone at least one day earlier to make an appointment with one of our consultants at our corporate offices.
Thamel Classroom
near Radisson , Ward 2, Kathmandu, Nepal, 44600
Set in Kathmandu, this classroom is well located near Thamel, with all amenities and WiFi.
For Sales Enquires and Meetings
All our centres have batches running on weekdays and weekends hence, please note that, in most cases, usually we are not able to organise ad hoc sales meetings, especially on our classrooms as they are all occupied with ongoing training sessions . Please contact us by e-mail or phone at least one day earlier to make an appointment with one of our consultants at our corporate offices.
This instructor-led, live training in Kathmandu (online or onsite) is aimed at developers and data scientists who wish to build, deploy, and manage machine learning workflows on Kubernetes.
By the end of this training, participants will be able to:
Install and configure Kubeflow on premise and in the cloud using AWS EKS (Elastic Kubernetes Service).
Build, deploy, and manage ML workflows based on Docker containers and Kubernetes.
Run entire machine learning pipelines on diverse architectures and cloud environments.
Using Kubeflow to spawn and manage Jupyter notebooks.
Build ML training, hyperparameter tuning, and serving workloads across multiple platforms.
This instructor-led, live training in Kathmandu (online or onsite) is aimed at developers and data scientists who wish to build, deploy, and manage machine learning workflows on Kubernetes.
By the end of this training, participants will be able to:
Install and configure Kubeflow on premise and in the cloud.
Build, deploy, and manage ML workflows based on Docker containers and Kubernetes.
Run entire machine learning pipelines on diverse architectures and cloud environments.
Using Kubeflow to spawn and manage Jupyter notebooks.
Build ML training, hyperparameter tuning, and serving workloads across multiple platforms.
This instructor-led, live training in Kathmandu (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to an AWS EC2 server.
By the end of this training, participants will be able to:
Install and configure Kubernetes, Kubeflow and other needed software on AWS.
Use EKS (Elastic Kubernetes Service) to simplify the work of initializing a Kubernetes cluster on AWS.
Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
Leverage other AWS managed services to extend an ML application.
This instructor-led, live training in Kathmandu (online or onsite) is aimed at engineers who wish to deploy Machine Learning workloads to Azure cloud.
By the end of this training, participants will be able to:
Install and configure Kubernetes, Kubeflow and other needed software on Azure.
Use Azure Kubernetes Service (AKS) to simplify the work of initializing a Kubernetes cluster on Azure.
Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
Leverage other AWS managed services to extend an ML application.
Read more...
Last Updated:
Testimonials (1)
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.
Guillaume Gautier - OLEA MEDICAL | Improved diagnosis for life TM
Online Kubeflow training in Kathmandu, Kubeflow training courses in Kathmandu, Weekend Kubeflow courses in Kathmandu, Evening Kubeflow training in Kathmandu, Kubeflow instructor-led in Kathmandu, Kubeflow classes in Kathmandu, Kubeflow trainer in Kathmandu, Kubeflow instructor-led in Kathmandu, Kubeflow private courses in Kathmandu, Kubeflow on-site in Kathmandu, Kubeflow instructor in Kathmandu, Kubeflow coaching in Kathmandu, Online Kubeflow training in Kathmandu, Weekend Kubeflow training in Kathmandu, Kubeflow one on one training in Kathmandu, Evening Kubeflow courses in Kathmandu, Kubeflow boot camp in Kathmandu